
MUHAT Tokenization

Andy

May 4, 2025

1 Introduction

Research on the formal language expressivity of transformers has not considered the
contribution of tokenization. Generally, studies have considered an embedding function
that maps every single symbol to a unique word embedding Strobl et al. (2024). In
practice, however, tokenization methods such as BPE (Sennrich et al., 2016) are used
to group symbols together before applying a word embedding. Here we will investigate
how the use of tokenization may affect the expressivity of a model, and use MUHATs
(Yang et al., 2024) as a test bed.

2 Preliminaries

I take vocabulary and notation from Guo (1997).

Definition 2.1 (Dictionary). Let Σ is an alphabet of characters. A Dictionary is a set
of strings ∆ ⊆ Σ∗ containing at least ϵ. Each element of ∆ is called a token. A string
over ∆ is one formed by concatenation of tokens from ∆.

For clarity, we will usually notate the tokenizations of strings in Σ∗ with a box
as tokens in ∆. That is, if w ∈ Σ∗ is a token of ∆ we will write w ∈ ∆. From each
dictionary, we get a natural homomorphism from ∆∗ → Σ∗ that we call a detokenization.

Definition 2.2 (Detokenziation). The induced detokenization D∆ : ∆∗ → Σ∗ is given
by mapping a token t ∈ ∆ to the corresponding string t ∈ Σ∗, so that

D∆(ϵ) = ϵ

D∆(t0t) = t0D∆(t) for t0 ∈ ∆, t ∈ ∆∗

It is easy to check that D∆ is a string homomorphism. Then we can define a tok-
enization, which can be thought of the inverse mapping of D∆

Definition 2.3 (Generalized Tokenization). A generalized tokenization T∆ : Σ∗ → P(∆∗)
is defined as the image under inverse homomorphism of the detokenization D∆. That
is:

T∆(w) = {t ∈ ∆∗ | D∆(t) = w}

We say that every t ∈ T∆(w) is a tokenization of w. Unless specified otherwise, we
will use tokenization to refer to a generalized tokenization.

1

3 TOKENIZATION FOR STAR-FREE LANGUAGES

Note that T∆ may in fact map a given string w to many different tokenizations. We
introduce some vocabulary for talking about how many tokenizations a given string has
over ∆.

Definition 2.4. We introduce the following three terms. Given an alphabet Σ, let
w ∈ Σ∗ and let ∆ be a dictionary over Σ. Then we say

- w has ambiguous over ∆ if |T∆(w)| > 1

- w has unambiguous over ∆ if |T∆(w)| = 1

- w is ill-formed (not well-formed) over ∆ if |T∆(w)| = 0

Then, we say that the dictionary ∆ is complete if every word w ∈ Σ∗ is well-formed
over ∆. In this case, we will also say that T∆ is complete. Note that a dictionary is
complete iff every σ ∈ Σ appears in ∆.

Let’s look at some toy examples.

Example 2.5. Let Σ = {a, b}. Let ∆ =
{

a , b , ab , ba
}
. First, ∆ is complete. The

string aaa is unambiguous over ∆. The string abab is ambiguous over ∆. All strings in
Σ∗ are well-formed over ∆.

Example 2.6. Let Σ = {a, b}. Let ∆ =
{

a , aa , ab , ba
}
. First, ∆ is not complete.

The string bbb is not well-formed over ∆. The string aaa is ambiguous over ∆. The
string baba is unambiguous over ∆.

It is important to note the following

Lemma 2.7. If ∆ is complete and contains any tokens t such that |t| > 1, then T∆ is
ambiguous.

Proof. Let w ∈ ∆ where w = w1w2 · · ·wn for n > 1. Then w can be tokenized as
either w or as w1 w2 · · · wn .

3 Tokenization for Star-Free Languages

The first observation we can make is that for every complete tokenization T∆, if L is
recognized by some counter-free automata, then it is still possible to recognize L by a
counter-free automata which only sees every word after the tokenization T∆ is applied.
More formally

Lemma 3.1. Let Σ be an alphabet and let ∆ be a complete dictionary of Σ. If L ⊆ Σ∗

is a star-free language, then the image of L under tokenization T∆(L) is also star-free.

In particular, this is a simple corollary of the following closure property of star-free
languages.

Lemma 3.2. The star-free languages are closed under inverse homomorphism∗.

Proof. Let L ⊆ Σ∗ be a star-free language. Let M be a finite aperiodic monoid rec-
ognizing L. That is, there is a homomorphism η : Σ∗ → M and P ⊆ M such that
η−1(P) = L. Let φ : Γ∗ → Σ∗ be a string homomorphism. So η ◦ φ : Γ∗ → M is also a
homomorphism. Furthermore we have that

∗I couldn’t easily locate a good citation for this other than this proof sketch
by J.E. Pin on cs stackexchange https://cs.stackexchange.com/questions/14785/

are-regular-languages-closed-under-inverse-homomorphism

2

https://cs.stackexchange.com/questions/14785/are-regular-languages-closed-under-inverse-homomorphism
https://cs.stackexchange.com/questions/14785/are-regular-languages-closed-under-inverse-homomorphism

3 TOKENIZATION FOR STAR-FREE LANGUAGES

φ−1(L) = φ−1(η−1(P)) = (η ◦ φ)−1(P)

Thus, φ−1(L) is also recognized by M . Since a language is star-free iff it is recognized
by a finite aperiodic monoid (Pin, 2020), we conclude φ−1(L) is also star-free. Thus,
the star-free languages are closed under inverse homomorphism.

Since tokenization is an inverse string homomorphism, we get Lemma 3.1 as an
immediate corollary. For clarity, we can consider an example.

Example 3.3. Let Σ = {a, b}. Let ∆ =
{

a , b , aa , ab , ba , bb
}
. ∆ is complete.

The language L = (ab)∗ is star-free. First, we can consider some example strings and
their tokenizations

ϵ 7→
{
ϵ
}

ab 7→
{

ab , a b
}

abab 7→
{

ab ab , ab a b , a b ab , a ba b , a b a b
}

We see that the image of L under tokenization T∆ can be written as the following
star-free regular expression

T∆(L) =
((

b (∅)C ∪ (∅)C a ∪ (∅)C aa (∅)C ∪ (∅)C bb (∅)C
))C

Thus, T∆(L) is also star-free. By the lemma this actually would have worked for any
complete dictionary ∆, but this is the most straightforward example.

However, the other direction is not true. That is, the image of star-free languages
under detokenization may not be star-free.

Lemma 3.4. The star-free languages are not closed under homomorphism.

This is best illustrated (and thus proven) with an example

Example 3.5. Let Σ = {a} and let ∆ = { a , aa } be a dictionary. ∆ is complete.
Consider L = aa

∗ ⊆ ∆∗, which is star-free. The image of L under detokenization
D∆(L) = (aa)∗ is in fact not star-free. For instance Z2 as (the additive monoid) recog-
nizes (aa)∗.

Note, however, this does not imply that that using the tokenization T∆ can map (aa)∗

into a star-free language. This is because the image T∆((aa)
∗) =

{
t ∈ ∆∗ | # a in t is even

}
,

and this language is PARITY over the dictionary ∆. In general, tokenization in the sense
defined above doesn’t help.

Lemma 3.6. The non-star-free languages are closed under complete tokenizations.

Proof. First, complete tokenizations result from detokenizations which are surjective
string homomorphisms. Since the regular languages are closed under homomorphism, if
the image of a language L is to be star-free, L must at least be regular. This means we
can follow Lemma 3.1 but let M be any periodic monoid.

For now, we can state all of the above more formally as a result about MUHATs.
First, we define how a MUHAT accepts words under generalized tokenizations.

3

REFERENCES

Definition 3.7. Let ∆ be a complete dictionary over alphabet Σ. Let T be a MUHAT
over Σ considered as a string acceptor. We say T accepts w ∈ Σ∗ under tokenization
T∆ iff T accepts all t ∈ T∆(w). We say T recognizes a language L ⊆ Σ∗ when T accepts
w ∈ Σ∗ iff w ∈ L.

Then, we can state and prove our main result.

Theorem 3.8. MUHATs recognize exactly the star-free languages under generalized to-
kenizations.

Proof. Let ∆ be a complete dictionary over Σ. In one direction, let L be a star-free
language. By Lemma 3.1, the image of L under any complete tokenization is still star-
free. That is, there is some star-free language K ⊆ ∆∗ such that for w ∈ L, v ̸∈ L we
have that T∆(w) ⊆ K and T∆(v) ⊆ ∆∗ \ K. Let T be a MUHAT which recognizes K
(Yang et al., 2024), and then T will recognize L under generalized tokenization T∆. In
the other direction, the proof is similar after using Lemma 3.6.

4 Refinements of Tokenization

It is notable that Theorem 3.8 relied on a fairly general notion of acceptance, which
required that in order accept w you had to accept all possible tokenizations of w. In
practice, you typically only consider some of the feasible tokenizations of a word. In
fact, it is possible that by reducing the size of T∆(w) we may be able to recognize
non-star-free languages under tokenization using MUHATs.

Example 4.1. Let Σ = {a} and let ∆ =
{
a , aa

}
. Define the refined tokenization

R∆(w) =
{
t ∈ T∆(w) | t ∈

(
aa

)
∪
(
aa

)∗
a
}
. R∆ is still complete, and then the

image of (aa)∗ under R∆ is actually a star-free language R∆((aa)
∗) =

(
aa

)∗
. Thus,

there is a MUHAT which accepts (aa)∗ under tokenization R∆.

Given Lemma 3.6, we know that if image under the inverse of a surjective homomor-
phism of a language L is star-free, then L must be regular. Thus

Theorem 4.2. MUHATs recognize only regular languages under refined tokenizations.

It remains to see how tokenization methods used in practice, such as BPE, may be
formalized as refined tokenizations in the sense above. The results above suggest it
is possible to increase the expressivity of the model by just changing the tokenization
method. This is interesting because it is a way to gain expressivity without changing
any of the model internals - all tokenization does is modify how the inputs are pre-
processed. Furthermore, a theoretical understanding of tokenization may also help us
better understand the nuances of how models treat strings at different levels of gran-
ularity. Perhaps this could point towards better practices on how to tokenize natural
language for different tasks.

References

Jin Guo. 1997. Critical tokenization and its properties. Computational Linguistics 23,
4 (1997), 569–596.

Jean-Éric Pin. 2020. How to prove that a language is regular or star-free?. In Inter-
national Conference on Language and Automata Theory and Applications. Springer,
68–88.

4

REFERENCES REFERENCES

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural Machine Translation
of Rare Words with Subword Units. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), Katrin Erk and
Noah A. Smith (Eds.). Association for Computational Linguistics, Berlin, Germany,
1715–1725. https://doi.org/10.18653/v1/P16-1162

Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. 2024. What
formal languages can transformers express? a survey. Transactions of the Association
for Computational Linguistics 12 (2024), 543–561.

Andy Yang, David Chiang, and Dana Angluin. 2024. Masked Hard-Attention Transform-
ers Recognize Exactly the Star-Free Languages. In Advances in Neural Information
Processing Systems (NeurIPS). https://arxiv.org/abs/2310.13897 To appear.

5

https://doi.org/10.18653/v1/P16-1162
https://arxiv.org/abs/2310.13897

	Introduction
	Preliminaries
	Tokenization for Star-Free Languages
	Refinements of Tokenization

