
It’s not that deep! (or is it?)
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1 Depth

It seems commonly accepted that in “deep learning”, we should be making our models deeper. Indeed, it seems
fashionable to make bigger and bigger models. Is this necessary? To start, we can consider the depth of other
kinds of networks

• In feed-forward neural networks, two layers are enough, as shown in the universal approximation theorem
Hornik et al. (1990) (but they have to get very wide).

• Convolutional neural networks vary, but large ones often have over a hundred layers, like in ResNet-152
He et al. (2016).

• Transformers have been getting larger over time (some famous ones shown in the chart) but not as big as
CNNs (yet?).

So one might wonder, what does depth give us in transformers? When do we need more depth? When
should we not use more depth?

2 Shallower transformers

In fact, there are many reasons why we wouldn’t want a deeper transformer. These include computational cost
and difficulty of optimization, which affect the architecture you want to you in a particular setting.
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2.1 Low resource settings

Murray et al. (2019) find that on low resource language translation, smaller models can be better. In fact,
completely deleting the FFN from the baseline model still results in improved BLEU in some cases. Indeed,
Van Biljon et al. (2020) find that with 3 layers is better than the standard 6 on low resource translation tasks.
(they count both encoder and decoder layers so it’s doubled)

They tested English to Setswana (123868), Sepedi (30777), and Afrikaans (53172). Their medium sized
models outperform the previous BLEU baselines (and for Sepedi, doubles the previous best).

2.2 Trading width for depth

The paper “Wide Attention Is The Way Forward For Transformers?” by Brown et al. (2022) compared 8 layer
transformers with 1 layer transformers with many heads on IMDb classfication and other tasks. The model
sizes and tasks are very limited, but they do find marginal improvements in this setting. (The results are very
limiting, and it appears after a round of critical reviews they appended a ? to their title)

2.3 Rank Collapse/Oversmoothing/Token Uniformity Problem

Three different names for the same phenomena, that repeated application of self-attention layers gradually
reduces the dimensionality of the word embedding space. Dong et al. (2021) show that pure self-attention
networks lose rank doubly exponentially with depth. However, residual connections can prevent this problem,
and FFN can also slow it down. This suggests that making your networks deeper introduces problems not found
in shallower networks, which may or not be desirable.
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3 Deeper Transformers

On the other hand, there are reasons to believe more layers are helpful. Here are a couple examples, but there
are many, many more.

3.1 High resource settings

We can look at another instance of MT. In this case, Liu et al. (2020) train transformers for WMT’14 English-
French (36M sentences) and English-German (4.5M), using 60 encoder layers and 12 decoder layers. Note that
they had to use some special initialization trick, called ADMIN, to make the deep transformer trainable. There
were improvements over the baseline.

They hypothesize that deeper models can better exploit on big and noisy datasets. For instance, back-
translation on French WMT added 21.8M more examples. However it appears

3.2 What are later layers doing

If more layers are helpful, then what are the later layers doing? Here, Clark et al. (2019) train 12 layer BERT
encoders and probe to see what the attention heads are doing. Many interesting observations were found in the
paper, that different layers had qualitatively different purposes. One note is that they find many heads which
attend to the directly following token in the earlier layers 1-6, but not later. For a few more examples, see this
list, where they notate each head with its (layer)-(head index).

Head 8-10 - Direct objects attend to their verbs
Head 8-11 - Noun modifiers (e.g., determiners) attend to their noun
Head 7-6 - Possessive pronouns and apostrophes attend to the head of the corresponding NP
Head 4-10 - Passive auxiliary verbs attend to the verb they modify
Head 9-6 - Prepositions attend to their objects
Head 5-4 - Coreferent mentions attend to their antecedents
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3.3 Induction Heads

Another neat construction is an “induction head”m which Elhage et al. (2021) find emerge in two-layer trans-
formers, but not one-layer ones. At a token a, the induction head looks at the previously occurring a, and
checks the token b that comes after that a. Then, it predicts b as the next token after the current position.
This really is a two-layer construction.

The first layer has heads which attend to the previous token. Then when on token a, the second layer looks
at the previous attention layer to find tokens b preceded by an a. Then it predicts b.

4 Some Theoretical Results

It would be cool to have something like the result for feed-forward networks, that we can always trade depth for
width in terms of expressivity, but we don’t really have those. Here are some relevant results in this direction,
though.

4.1 Logarithmic Depth

In this week’s FLaNN talk, Daniel Hsu presented Sanford et al. (2024), which used some ideas from Massively
Parallel Computation (MPC) theory to talk about transformer sizes.

Here’s one result. tl;dr, assuming a well accepted conjecture in MPC theory, they find a lower bound on the
depth of transformers needed to solve graph connectivity, assuming a bound on the width of the transformer.

Corollary 4.1. Let ϵ ∈ (0, 1) be any constant, and let D ≥ N ϵ. Assume Conjecture 2.4, and suppose there
exists T ∈ TransformerNm,L,H with mH = O(D1−ϵ) that decides connectivity of any input graph with connected
components having diameter ≤ D. Then L = Ω(logD).

However, this does not suggest that a smaller transformer exists. In particular, Daniel suggested in the talk
that mH might have to be linear in D.

4.2 Depth-Width Tradeoffs

Here Levine et al. (2020) prove and experimentally verify some ideas about depth-efficiency. tl;dr a network
has to be very wide in order for making it deeper to help.

When depth L is below some threshold log(d) based on the width d, then it is more efficient to add depth
than to make it wide. That is, any shallower network simulating a network of depth L would need an exponential
increase in width.

Their results rely on the notion of “separation rank”, which roughly means how hard it is to model different
kinds of dependencies between different parts of the input. For instance, convolutional neural networks have
high separation rank, because passing info from one side to another takes many layers, depending on kernel
size. But transformers have low separation rank, because self attention layers allow positions to all look at each
other.

Corollary 4.2. With probability 1, the function realized upon randomization of the weights of a deep self-

attention network with depth Ldeep and with ddeepx > 3L
deeP

may only be realized by a shallower network with

depth Lshallow = Ldeep

d and width dshallowx = wdshallowx , where d > 1, w > 1 (i.e., the deep network is deeper by
a factor of d and the shallow network is wider by a factor of w), if the following holds:

w ∝ exp(exp(d))

Again this is a bound, doesn’t say that a shallower network actually exists. It is necessary for the width to
get this big in order to simulate the separation rank of a deeper network, but this doesn’t mean it’s sufficient.

When depth is large, D > log3(dx), they say only an upper bound of polynomial width is needed to simulate
the separation rank of large depth with shallower. Again, they only conjecture that such a transformer exists.

Corollary 4.3. Let ydeep denote the function realized by a deep self-attention network at any output location

i ∈ [N ], with depth and width denoted Ldeep, ddeepx such that Ldeep > log3 d
deep
x . Denote β1 :=

log3 ddeep
x

Ldeep < 1.

Then, there exists β2 = O(log(H) · log(ddeepx ) · log(Ldeep)) such that the function realized by a network of depth:

Lshallow = β1 · Ldeep + β2, and width: dshallowx = 3β2d
deep
x , denoted yshallow, has higher separation rank, i.e.:
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sep(yshallowp ) > sep(ydeepp′ ) ; where p, p′ ∈ [dx]

The above corollary, which follows from theorems 1 and 2, shows that the separation rank of a function
realized by a self-attention network of arbitrary depth L > log3(dx) can be surpassed by a shallower network of
polynomial width, contrarily to the established behavior for networks of depth L < log3(dx).

It is worth noting that their experiments are decoder language modeling on English Wikipedia, BookCorpus
and OpenWebText, with a small vocab size of 2000 in order to control the embedding dimensions. Also, their
theoretical analysis ignores all nonlinear activations and layernorm.

5 Ideas and Questions

5.1 Masked Hard Attention

In a recent revision, (Yang et al., 2024) showed for unique hard-attention transformers, more layers always gains
more expressivity. This relies on the proof from Etessami and Wilke (2000) that linear temporal logic formulas
get more expressive the deeper you make them.

5.2 Soft Attention

A naive extension of that result for log-precision softmax transformers would require showing that TC0 get more
expressive with more depth, and doing so would resolve on of the main open questions in circuit complexity
(whether TC0 = NC1), so it is likely not easy.

It appears that Keisler and Lotfallah (2011) suggest an affirmative answer to this question, but only when
the structures are graphs. That is, I played around with the proof for a while, but could not get it to work for
strings. I have been working with some restrictions TC0 that might be easier to prove something about. Will
write up sometime later.
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