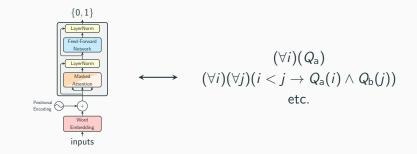
The ABC's of RASP (mostly $\frac{B's \text{ and }}{due \text{ to time}}$ C's)

Andy Yang (Univ. of Notre Dame, USA) 11 Oct 2024

Background

Our Perspective: Transformers and Formal Models



What languages are recognizedWhat languages areby transformer encoders?defined by logical formulas?

For a survey of papers in this area: Strobl et al. [2023], "Transformers as Recognizers of Formal Languages: A Survey on Expressivity"

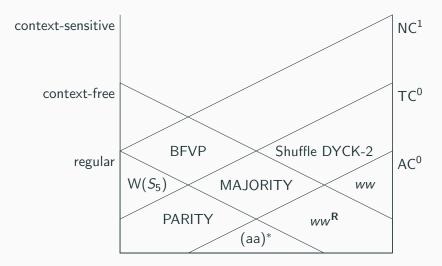


Figure 1: Some complexity classes defined by circuit families, compared with the perhaps more familiar Chomsky hierarchy. See Strobl [2023]

RASP

- Matrix multiplications are too confusing for me!
- Can we relate transformers to other formal models?
- How can we prove the expressivity of transformers?

RASP

Challenge 2: Shift

Shift all of the tokens in a sequence to the right by i positions. (Here we introduce an optional parameter in the aggregation: the default value to be used when no input positions are selected. If not defined, this value is 0.)

```
def shift(i=1, default="_", seq=tokens):
    x = (key(indices) == query(indices-i)).value(seq, default)
    return x.name("shift")
shift(2)
```

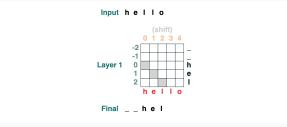
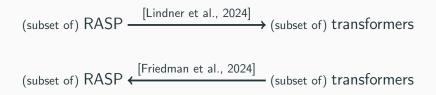
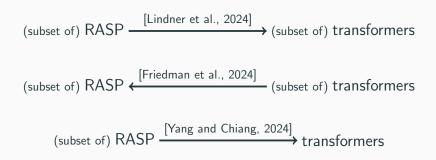


Figure 2: Weiss et al. [2021] and https://srush.github.io/raspy/





C-RASP: Counting Operators

\mathcal{Q}_ℓ		
Qr		
$C_{\ell}(i)$:=	$\# [j \leq i] \ Q_{\ell}(j)$
$C_r(i)$:=	$\# [j \leq i] \ Q_r(j)$
V(i)	:=	$C_{\ell}(i) < C_r(i)$
$C_V(i)$:=	$\# [j \leq i] \ V(j)$
M(i)	:=	$C_V(i)=0$
B(i)	:=	$C_{\ell}(i) = C_r$
D(i)	:=	$M(i) \wedge B(i)$

C-RASP Program Trace

Program Trace								
input	$ \ell$	l	r	l	r	r		
Q_ℓ Q_r								
C_ℓ								
C _r V								
C _V M								
В								
D								

Initial Vectors - C-RASP Example: Dyck-1

The initial vectors are Q_{ℓ} and Q_r . These are all defined such that:

 $Q_{\ell}(i)$ = True iff ℓ is *i*-th symbol $Q_r(i)$ = True iff *r* is *i*-th symbol

Program Trace							
input	l	l	r	l	r	r	
Q_ℓ	Т	Т	F	Т	F	F	
Qr	F	F	Т	F	Т	Т	

\textit{C}_{ℓ} - C-RASP Example: Dyck-1

 C_ℓ counts the number of ℓ seen up until and including current position

$$C_{\ell}(i) = \# [j \leq i] \quad Q_{\ell}(i)$$
.

Program Trace							
input	l	l	r	l	r	r	
Q_ℓ	Т	Т	F	Т	F	F	
Qr	F	F	Т	F	Т	Т	
C_{ℓ}	1	2	2	3	3	3	

C_r - C-RASP Example: Dyck-1

 C_r counts the number of r seen up until and including current position

$$C_r(i) = \# [j \le i] \quad Q_r(i) .$$

Program Trace								
input	l	ℓ	r	ℓ	r	r		
Q_ℓ	Т	Т	F	Т	F	F		
Qr	F	F	Т	F	Т	Т		
C_{ℓ}	1	2	2	3	3	3		
Cr	0	0	1	1	2	3		

V - C-RASP Example: Dyck-1

V indicates a matching violation - if there are ever more r than ℓ

$$V(i) = C_{\ell}(i) < C_{r}(i) .$$

Program Trace							
input	l	ℓ	r	ℓ	r	r	
\mathcal{Q}_ℓ	Т	Т	F	Т	F	F	
Q_r	F	F	Т	F	Т	Т	
C_{ℓ}	1	2	2	3	3	3	
Cr	0	0	1	1	2	3	
V	F	F	F	F	F	F	

 C_V counts the number of violations seen up until the current position.

$$C_V(i) = \# [j \le i] \quad V(i)$$
.

Program Trace							
input	l	l	r	l	r	r	
Q_ℓ	Т	Т	F	Т	F	F	
Q_r	F	F	Т	F	Т	Т	
C_ℓ	1	2	2	3	3	3	
Cr	0	0	1	1	2	3	
V	F	F	F	F	F	F	
C_V	0	0	0	0	0	0	

 ${\cal M}$ checks that the parentheses are always matched by verifying if there are zero violations

 $M(i) = C_V(i) = 0.$

Program Trace							
input	l	l	r	ℓ	r	r	
Q_ℓ	Т	Т	F	Т	F	F	
Q_r	F	F	Т	F	Т	Т	
C_ℓ	1	2	2	3	3	3	
Cr	0	0	1	1	2	3	
V	F	F	F	F	F	F	
C_V	0	0	0	0	0	0	
М	Т	Т	Т	Т	Т	Т	

$$B$$
 checks that the parentheses are
balanced by verifying if there are equally
as many ℓ as r

 $B(i) = C_{\ell}(i) = C_{r}(i)$

Program Trace								
input	l	ℓ	r	ℓ	r	r		
Q_ℓ	Т	Т	F	Т	F	F		
Qr	F	F	Т	F	Т	Т		
C_{ℓ}	1	2	2	3	3	3		
Cr	0	0	1	1	2	3		
V	F	F	F	F	F	F		
C_V	0	0	0	0	0	0		
М	Т	Т	Т	Т	Т	Т		
В	F	F	F	F	F	Т		

 ${\cal D}$ checks the string is matched and balanced.

 $D(i) = M(i) \wedge B(i)$

Program Trace								
input	l	ℓ	r	ℓ	r	r		
Q_ℓ	Т	Т	F	Т	F	F		
Q_r	F	F	Т	F	Т	Т		
C_ℓ	1	2	2	3	3	3		
Cr	0	0	1	1	2	3		
V	F	F	F	F	F	F		
C_V	0	0	0	0	0	0		
М	Т	Т	Т	Т	Т	Т		
В	F	F	F	F	F	Т		
D	F	F	F	F	F	Т		

More Details

- Every C-RASP program compiles into a transformer that simulates it perfectly for inputs of arbitrary length
- Allows us to show the expressivity of transformers on many tasks: Dyck-1, aⁿbⁿcⁿ, and piecewise testable languages.

$\in \mathbf{C}\text{-}\mathbf{RASP}$

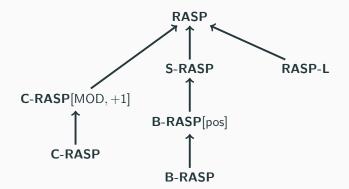
- DYCK-1
- Majority
- $a^n b^n c^n$
- Piecewise testable $\Sigma^* a_1 \Sigma^* a_2 \Sigma^* \dots \Sigma^* a_n \Sigma^*$

some of these are just conjectures ...

$ot\in \mathbf{C}\text{-}\mathbf{RASP}$

- $\Sigma^* a c^* a \Sigma^*$
- $\{a^m \mid m = n^2, n \in \mathbb{N}\}$
- $\{w\$w \mid \text{for } w \in \Sigma\}$
- $(aa)^*$ and PARITY
- NC¹-complete languages

The RASP Family Tree



Disclaimer: More arrows may exist

- Every C-RASP program compiles into a transformer that simulates it perfectly for inputs of arbitrary length
- Understand what transformer encoders can and cannot do, more intuitively
- Connections with formal language theory and logic

- Dan Friedman, Alexander Wettig, and Danqi Chen. Learning transformer programs. Advances in Neural Information Processing Systems, 36, 2024.
- David Lindner, János Kramár, Sebastian Farquhar, Matthew Rahtz, Tom McGrath, and Vladimir Mikulik. Tracr: Compiled transformers as a laboratory for interpretability. Advances in Neural Information Processing Systems, 36, 2024.
- Lena Strobl. Average-hard attention transformers are constant-depth uniform threshold circuits, 2023. URL https://arxiv.org/abs/2308.03212. arXiv:2308.03212.
- Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. Transformers as recognizers of formal languages: A survey on expressivity. arXiv preprint arXiv:2311.00208, 2023.
- Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. In International Conference on Machine Learning, pages 11080–11090. PMLR, 2021.
- Andy Yang and David Chiang. Counting like transformers: Compiling temporal counting logic into softmax transformers. In *Proceedings of the Conference on Language Modeling*, 2024. URL https://arxiv.org/abs/2404.04393. To appear.

Extra C-RASP Examples $a^*\,b^* \, \text{ over } \Sigma = \{a, b\}$

$$\begin{split} & C_a(i) := \# \left[j \leq i \right] \; Q_a(j) \\ & C_b(i) := \# \left[j \leq i \right] \; Q_b(j) \\ & V(i) := Q_a(i) \wedge C_b(i) \geq 1 \\ & C_V(i) := \# \left[j \leq i \right] \; V(j) \\ & Y(i) := C_V(i) = 0 \end{split}$$

positions with a's
positions with b's
Violation: an a has b's preceding it
Violations
Zero Violations

$a^*b^*a^*$ over $\Sigma = \{a, b\}$

$$\begin{split} C_{a}(i) &:= \# [j \leq i] \ Q_{a}(j) \\ C_{b}(i) &:= \# [j \leq i] \ Q_{b}(j) \\ BA(i) &:= Q_{a}(i) \land C_{b}(i) \geq 1 \\ C_{ba}(i) &:= \# [j \leq i] \ BA(j) \\ BAB(i) &:= Q_{b}(i) \land C_{ba} \geq 1 \\ C_{bab}(i) &:= \# [j \leq i] \ BAB(j) \\ Y(i) &:= C_{bab}(i) = 0 \end{split}$$

positions with a's
positions with b's
A subsequence ba ends at i
ends of subsequence ba
the subsequence bab ends at i
ends of subsequence bab
There are no subsequences bab

MORE?!

$$a^n b^n c^n$$
 over $\Sigma = \{a, b, c\}$

$$\begin{split} C_{a}(i) &:= \# [j \leq i] \ Q_{a}(j) \\ C_{b}(i) &:= \# [j \leq i] \ Q_{b}(j) \\ C_{c}(i) &:= \# [j \leq i] \ Q_{c}(j) \\ A(i) &:= C_{b}(i) + C_{c}(i) = 0 \\ B(i) &:= C_{c}(i) = 0 \\ C_{A}(i) &:= \# [j \leq i] \ Q_{a}(j) \land A(j) \\ C_{B}(i) &:= \# [j \leq i] \ Q_{b}(j) \land B(j) \\ G_{a}(i) &:= C_{A}(i) = C_{a}(i) \\ G_{b}(i) &:= C_{B}(i) = C_{b}(i) \\ G_{abc}(i) &:= C_{a}(i) = C_{b}(i) \\ G_{abc}(i) &:= C_{a}(i) < C_{b}(i) \\ Y(i) &:= G_{a}(i) \land G_{b}(i) \land G_{abc}(i) \end{split}$$

positions with a's
positions with b's
positions with c's
No preceding b's or c's
No preceding c's
a's with no preceding b's or c's
b's with no preceding c's
no a's have preceding b's or c's
no b's have preceding c's
same number of a's, b's, c's
Correct order & number of symbols

Ok one more

hello over $\Sigma = \{e, h, l, o\}$

$$\begin{split} &C_{e}(i):=\#\left[j \leq i\right] \ Q_{e}(j) \\ &C_{h}(i):=\#\left[j \leq i\right] \ Q_{h}(j) \\ &C_{l}(i):=\#\left[j \leq i\right] \ Q_{l}(j) \\ &C_{o}(i):=\#\left[j \leq i\right] \ Q_{o}(j) \\ &C_{\Sigma}(i):=\#\left[j \leq i\right] \ 1 \\ &HE(i):=Q_{e}(i) \wedge C_{h}(i)=1 \\ &C_{he}(i):=\#\left[j \leq i\right] \ HE(j) \\ &HEL(i):=Q_{l}(i) \wedge C_{he}(i)=1 \\ &C_{hel}(i):=\#\left[j \leq i\right] \ HEL(j) \\ &HELLO(i):=Q_{o}(i) \wedge C_{hel}(i)=2 \\ &Y(i):=HELLO(i) \wedge C_{\Sigma}(i)=5 \end{split}$$

- # positions with e's
 # positions with h's
 # positions with l's
 # positions with o's
 # symbols in string
- A subsequence he ends at i
- # ends of subsequence he
- A subsequence *hel* ends at *i*
- # ends of subsequence hel
- A subsequence hello ends at i
- Length 5 and contains hello