
Masked Hard-Attention Transformers and
Boolean RASP Recognize Exactly the Star-Free
Languages

Dana Angluin, David Chiang, Andy Yang



The Big Picture: expressivity and logic

Inputs

Input
Embedding

+

Attention

Feed
Forward

{0, 1}

Positional
Encoding

What languages are recognized
by transformer encoders?

(∀i)(Qa)
(∀i)(∀j)(i < j→ Qa(i) ∧ Qb(j))

etc.

What languages are
defined by logical formulas?

For a survey of papers in this area (including this one): Strobl et al. [7],
“Transformers as Recognizers of Formal Languages: A Survey on Expressivity”
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The Big Picture

Questions to Consider
• Expressivity?
• Learnability?
• Interpretability?
• Improvements?
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Contextualizing Our Results

B-RASP masked hard-attention transformers FO[<] star-free

FO[<, MOD]
masked hard-attention transformers
+ sinusoidal position embedding

FO[<, Mon]
masked hard-attention transformers
+ finite-image position embedding

UHAT

AHAT AC0

TC0

RASP
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Masked Hard-Attention Transformers
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Masked Hard-Attention Transformers

Inputs

Embedding

M

fs

fc

fv

fp

Outputs

Position-wise

Attention masking: strict future, strict past, or none

Attention scores: any bilinear function

Leftmost or rightmost maximum

Values: any linear function with residual connection

3-layer feed-forward network with ReLU activation

Hard attention
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B-RASP

masked
hard-attention
transformers

masked
Boolean

transformers

B-RASP

linear temporal logic

counter-free

FO[<]

star-free

Th
eo
rem

7.1
Th
eo
rem

7.3

Theorem
6.1

Theorem
6.2

Theorem
4.3

Th
eo
rem

9.5

Thm. 4.1

Kamp [3]

McNaughton and

Papert [4]

Schützenberger [6]

7



B-RASP: example language

Dyck-1 of depth 2
= strings of parentheses, balanced and nested up to 2 deep
= strings where the number of ℓ’s is equal to the number of r’s, and
every prefix contains 0–2 more ℓ’s than r’s

Examples:

• accepted: ℓℓrrℓr 3

• accepted: ℓℓrℓrr 3

• rejected: ℓℓℓrrr 7

• rejected: ℓrℓrℓ 7

ℓ ℓ

rr
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B-RASP: example program

QEOS
Qℓ

Qr
Pℓ(i) = ▶ [j < i, 1] Qℓ(j)
Sr(i) = ◀ [j > i, 1] Qr(j)
I(i) = (Qℓ(i) ∧ Sr(i)) ∨ (Qr(i) ∧ Pℓ(i))
Vℓ(i) = ◀ [j > i,¬I(j)] (Qℓ(i) ∧ ¬I(i) ∧ ¬Qr(j))
Vr(i) = ▶ [j < i,¬I(j)] (Qr(i) ∧ ¬I(i) ∧ ¬Qℓ(j))
Y(i) = ◀ [1, Vℓ(j) ∨ Vr(j)] ¬(Vℓ(j) ∨ Vr(j))
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B-RASP: program trace

Program Trace

input ℓ ℓ r ℓ r r EOS

QEOS
Qℓ

Qr
Pℓ
Sr
I
Vℓ
Vr
Y

10



B-RASP: attention operators

▶ [j < i, S(i, j)] V(j)

find rightmost j left of i maximizing S(i, j) and return V(j)
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B-RASP: attention operators

◀ [j > i, S(i, j)] V(j)

find leftmost j right of i maximizing S(i, j) and return V(j)
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Initial Vectors - B-RASP Example: Dyck-1 of Depth 2

The initial vectors are QEOS, Qℓ, and Qr.
These are all defined such that:

QEOS(i) = True iff EOS is i-th symbol

Qℓ(i) = True iff ℓ is i-th symbol

Qr(i) = True iff r is i-th symbol

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 0 0 0
Qr 0 0 1 0 1 1 0
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Pℓ - B-RASP Example: Dyck-1 of Depth 2

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j).

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ
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Pℓ : i = 1

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 0 0 0 j
Qr 0 0 1 0 1 1 0
Pℓ ? i

score – – – – – – 1
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Pℓ : i = 1

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 0 0 0 j
Qr 0 0 1 0 1 1 0
Pℓ 0 i

score – – – – – – 1
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Pℓ : i = 2

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 j 1 0 1 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 ? i

score 1 j – – – – – –
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Pℓ : i = 2

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 j 1 0 1 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 ? i

score 1 j – – – – – –
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Pℓ : i = 2

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 j 1 0 1 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 i

score 1 j – – – – – –
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Pℓ : i = 3

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 j 0 1 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 ? i

score 1 1 j – – – – –
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Pℓ : i = 3

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 j 0 1 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 ? i

score 1 1 j – – – – –
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Pℓ : i = 3

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 j 0 1 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 i

score 1 1 j – – – – –
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Pℓ : i = 4

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 j 1 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 ? i

score 1 1 1 j – – – –
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Pℓ : i = 4

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 j 1 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 ? i

score 1 1 1 j – – – –
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Pℓ : i = 4

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 j 1 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 0 i

score 1 1 1 j – – – –
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Pℓ : i = 5

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 j 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 0 ? i

score 1 1 1 1 j – – –
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Pℓ : i = 5
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Pℓ : i = 5

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 j 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 0 1 i

score 1 1 1 1 j – – –
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Pℓ : i = 6

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 0 j 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 0 1 ? i

score 1 1 1 1 1 j – –
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Pℓ : i = 6

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 0 j 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 0 1 ? i

score 1 1 1 1 1 j – –
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Pℓ : i = 6

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 0 j 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 0 1 0 i

score 1 1 1 1 1 j – –
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Pℓ : i = 7

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 0 0 j 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 0 1 0 ? i

score 1 1 1 1 1 1 j –
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Pℓ : i = 7

Pℓ indicates whether the symbol
immediately to the left is ℓ.
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rr
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Pℓ : i = 7
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rr
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Pℓ - B-RASP Example: Dyck-1 of Depth 2

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j).

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 0 1 1 0 0
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Sr - B-RASP Example: Dyck-1 of Depth 2

Sr indicates whether the symbol
immediately to the right is r.

Sr(i) = ◀ [j > i, 1] Qr(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 0 1 0 0
Sr 0 1 0 1 1 0 0
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Sr - B-RASP Example: Dyck-1 of Depth 2

I indicates whether position i is in a
consecutive pair ℓr.

I(i) = ( Qℓ(i) ∧ Sr(i) ) ∨ ( Qr(i) ∧ Pℓ(i) ).

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 0 1 0 0
Sr 0 1 0 1 1 0 0
I 0 1 1 1 1 0 0
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Vℓ - B-RASP Example: Dyck-1 of Depth 2

Vℓ registers a violation for position i if it
has symbol ℓ, is not immediately matched,
and the next not-immediately-matched
symbol is not r:

Vℓ(i) = ◀
[
j > i,¬ I(j)

]
( Qℓ(j) ∧ ¬ I(j) ∧ ¬ Qr(j) ).

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 0 1 0 0
Sr 0 1 0 1 1 0 0
I 0 1 1 1 1 0 0
Vℓ 0 0 0 0 0 0 0
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Vr - B-RASP Example: Dyck-1 of Depth 2

The Boolean vector Vr registers a violation
for position i if it has symbol r, is not
immediately matched, and the previous
not-immediately-matched symbol is not ℓ:

Vr(i) = ▶
[
j < i,¬ I(j)

]
(Qr(i) ∧ ¬ I(i) ∧ ¬ Qℓ(j) )

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 0 1 0 0
Sr 0 1 0 1 1 0 0
I 0 1 1 1 1 0 0
Vℓ 0 0 0 0 0 0 0
Vr 0 0 0 0 0 0 0
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Y - B-RASP Example: Dyck-1 of Depth 2

The output vector Y checks if there is a
violation anywhere.

Y(i) = ◀
[
1, Vℓ(j) ∨ Vr(j)

]
¬( Vℓ(j) ∨ Vr(j) )

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 0 1 0 0
Sr 0 1 0 1 1 0 0
I 0 1 1 1 1 0 0
Vℓ 0 0 0 0 0 0 0
Vr 0 0 0 0 0 0 0
Y 1 1 1 1 1 1 1

ℓℓrℓrr: Accepted
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Results: B-RASP to Transformers

masked
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Theorem 7.1
Any B-RASP program can be
converted to a masked
hard-attention transformer.

Score predicates S(i, j) can be
written in canonical DNF:

S(i, j) = (α1(i) ∧ β1(j))
∨ (α2(i) ∧ β2(j))
...
∨ (αk(i) ∧ βk(j))

which is essentially a dot-product
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Results: Transformers to B-RASP
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Theorem 7.3
Any masked hard-attention
transformer can be converted to a
B-RASP program.

Show that the transformer uses
only m different activation values.
Then represent an activation with
⌈log2m⌉ bits.
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Transformer Equivalence

masked hard-attention Transformer

Σ∗

Rd×n B-RASP

input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 0 1 0 0
Sr 0 1 0 1 1 0 0
I 0 1 0 1 0 0 0
Vℓ 0 0 0 0 0 0 0
Vr 0 0 0 0 0 0 0
Y 1 1 1 1 1 1 1
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Equivalent Formalisms

Counter-free automata
ℓ ℓ

rr

Star-free regular expressions: union, concatenation,
complementation

∅aa∅

FO[<]: first order logic of strings with order

Succ(i, j) ≡ j > i ∧ ¬(∃k)(i < k ∧ k < j)

LTL: linear temporal logic

ϕ1 ∧ ϕ2 until ¬ϕ3
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Results: B-RASP to FO[<]

masked
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Theorem 4.1
Any B-RASP program can be
converted to a FO[<] formula.

This is fairly straightforward!
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Prior Work: FO[<] to LTL
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Theorem
Any FO[<] formula can be
converted to an LTL formula.

Originally proved in Kamp’s PhD
thesis (> 100 pages). Challenge:
an FO[<] formula has any number
of free variables, but an LTL
formula has just one
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Results: LTL to B-RASP
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McNaughton and

Papert [4]

Schützenberger [6] Theorem 4.3
Any LTL formula can be converted
to a B-RASP program.

This is fairly straightforward too:
the time variable becomes a
position variable.
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Prior Work: Counter-Free Automata to Star-Free to FO[<]

masked
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Theorem Any formula of FO[<]

can be converted to a star-free
regular expression.

Theorem Any star-free regular
expression can be converted to a
counter-free finite automaton.
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Results: Counter-Free Automata to B-RASP
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Theorem 9.5 Any counter-free
automaton can be converted to a
B-RASP program.

The Krohn-Rhodes decomposition
(one PhD thesis for two people!) is
a cascade of identity–reset
automata, which can be simulated
in B-RASP.
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B-RASP - Variants - Strict vs. Non-Strict Masking

Theorem
B-RASP with strict masking is strictly more expressive than with
non-strict masking.

Proof.
No B-RASP program with non-strict masking can recognize the
language {a} with Σ = {a}.
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Results: Sinusoidal Positional Embeddings

B-RASP masked hard-attention transformers FO[<]

FO[<, MOD]
masked hard-attention transformers
+ sinusoidal position embedding

FO[<, Mon]
masked hard-attention transformers
+ finite-image position embedding

UHAT

AHAT AC0

TC0

RASP

Corollary Masked hard-attention
transformers with sinusoidal
position embeddings recognize
exactly the regular languages in
AC0

By Mix Barrington et al. [5],
FO[<, MOD] recognizes exactly the
regular languages in AC0

40



Results: Positional Embeddings With Finite Image

B-RASP masked hard-attention transformers FO[<]

FO[<, MOD]
masked hard-attention transformers
+ sinusoidal position embedding

FO[<, Mon]
masked hard-attention transformers
+ finite-image position embedding

UHAT

AHAT AC0

TC0

RASP Corollary Masked hard-attention
transformers that have position
embeddings with finite image
recognize exactly the languages
definable in FO[<,Mon].
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What Next?

• Average-hard attention?
• Learnability?
• Softmax attention?
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Thank You

Stephen Bothwell, Darcey Riley, Ken Sible,

Aarohi Srivastava, Lena Strobl, and Chihiro Taguchi!
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Questions?

Σ∗

Rd×n

• Masked hard-attention
transformer as a “base case”

• B-RASP and its equivalences
• Strict masking is more
powerful than non-strict
masking

• Augmenting with position
embeddings
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Notes on Learnability

Bhattamishra et al. [2] argues that Dyck-1 of depth more than 1 is not
learned by transformers

Yao et al. [8] argues that Dyck-k of depth d is learned by transformers
for various k and d.
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