
Masked Hard-Attention Transformers and
Boolean RASP Recognize Exactly the Star-Free
Languages

Dana Angluin, David Chiang, Andy Yang

The Big Picture: expressivity and logic

Inputs

Input
Embedding

+

Attention

Feed
Forward

{0, 1}

Positional
Encoding

What languages are recognized
by transformer encoders?

(∀i)(Qa)
(∀i)(∀j)(i < j→ Qa(i) ∧ Qb(j))

etc.

What languages are
defined by logical formulas?

For a survey of papers in this area (including this one): Strobl et al. [7],
“Transformers as Recognizers of Formal Languages: A Survey on Expressivity”

1

The Big Picture

Questions to Consider
• Expressivity?
• Learnability?
• Interpretability?
• Improvements?

2

Our Results

masked
hard-attention
transformers

masked
Boolean

transformers

B-RASP

linear temporal logic

counter-free

FO[<]

star-free

Th
eo
rem

7.1
Th
eo
rem

7.3

Theorem
6.1

Theorem
6.2

Theorem
4.3

Th
eo
rem

9.5

Thm. 4.1

Kamp [3]

McNaughton and

Papert [4]

Schützenberger [6]

3

Contextualizing Our Results

B-RASP masked hard-attention transformers FO[<] star-free

FO[<, MOD]
masked hard-attention transformers
+ sinusoidal position embedding

FO[<, Mon]
masked hard-attention transformers
+ finite-image position embedding

UHAT

AHAT AC0

TC0

RASP

4

Masked Hard-Attention Transformers

masked
hard-attention
transformers

masked
Boolean

transformers

B-RASP

linear temporal logic

counter-free

FO[<]

star-free

Th
eo
rem

7.1
Th
eo
rem

7.3

Theorem
6.1

Theorem
6.2

Theorem
4.3

Th
eo
rem

9.5

Thm. 4.1

Kamp [3]

McNaughton and

Papert [4]

Schützenberger [6]

5

Masked Hard-Attention Transformers

Inputs

Embedding

M

fs

fc

fv

fp

Outputs

Position-wise

Attention masking: strict future, strict past, or none

Attention scores: any bilinear function

Leftmost or rightmost maximum

Values: any linear function with residual connection

3-layer feed-forward network with ReLU activation

Hard attention

6

B-RASP

masked
hard-attention
transformers

masked
Boolean

transformers

B-RASP

linear temporal logic

counter-free

FO[<]

star-free

Th
eo
rem

7.1
Th
eo
rem

7.3

Theorem
6.1

Theorem
6.2

Theorem
4.3

Th
eo
rem

9.5

Thm. 4.1

Kamp [3]

McNaughton and

Papert [4]

Schützenberger [6]

7

B-RASP: example language

Dyck-1 of depth 2
= strings of parentheses, balanced and nested up to 2 deep
= strings where the number of ℓ’s is equal to the number of r’s, and
every prefix contains 0–2 more ℓ’s than r’s

Examples:

• accepted: ℓℓrrℓr 3

• accepted: ℓℓrℓrr 3

• rejected: ℓℓℓrrr 7

• rejected: ℓrℓrℓ 7

ℓ ℓ

rr

8

B-RASP: example program

QEOS
Qℓ

Qr
Pℓ(i) = ▶ [j < i, 1] Qℓ(j)
Sr(i) = ◀ [j > i, 1] Qr(j)
I(i) = (Qℓ(i) ∧ Sr(i)) ∨ (Qr(i) ∧ Pℓ(i))
Vℓ(i) = ◀ [j > i,¬I(j)] (Qℓ(i) ∧ ¬I(i) ∧ ¬Qr(j))
Vr(i) = ▶ [j < i,¬I(j)] (Qr(i) ∧ ¬I(i) ∧ ¬Qℓ(j))
Y(i) = ◀ [1, Vℓ(j) ∨ Vr(j)] ¬(Vℓ(j) ∨ Vr(j))

9

B-RASP: program trace

Program Trace

input ℓ ℓ r ℓ r r EOS

QEOS
Qℓ

Qr
Pℓ
Sr
I
Vℓ
Vr
Y

10

B-RASP: attention operators

▶ [j < i, S(i, j)] V(j)

find rightmost j left of i maximizing S(i, j) and return V(j)

11

B-RASP: attention operators

◀ [j > i, S(i, j)] V(j)

find leftmost j right of i maximizing S(i, j) and return V(j)

12

Initial Vectors - B-RASP Example: Dyck-1 of Depth 2

The initial vectors are QEOS, Qℓ, and Qr.
These are all defined such that:

QEOS(i) = True iff EOS is i-th symbol

Qℓ(i) = True iff ℓ is i-th symbol

Qr(i) = True iff r is i-th symbol

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 0 0 0
Qr 0 0 1 0 1 1 0

13

Pℓ - B-RASP Example: Dyck-1 of Depth 2

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j).

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ

14

Pℓ : i = 1

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 0 0 0 j
Qr 0 0 1 0 1 1 0
Pℓ ? i

score – – – – – – 1

15

Pℓ : i = 1

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 0 0 0 j
Qr 0 0 1 0 1 1 0
Pℓ 0 i

score – – – – – – 1

15

Pℓ : i = 2

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 j 1 0 1 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 ? i

score 1 j – – – – – –

16

Pℓ : i = 2

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 j 1 0 1 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 ? i

score 1 j – – – – – –

16

Pℓ : i = 2

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 j 1 0 1 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 i

score 1 j – – – – – –

16

Pℓ : i = 3

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 j 0 1 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 ? i

score 1 1 j – – – – –

17

Pℓ : i = 3

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 j 0 1 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 ? i

score 1 1 j – – – – –

17

Pℓ : i = 3

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 j 0 1 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 i

score 1 1 j – – – – –

17

Pℓ : i = 4

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 j 1 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 ? i

score 1 1 1 j – – – –

18

Pℓ : i = 4

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 j 1 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 ? i

score 1 1 1 j – – – –

18

Pℓ : i = 4

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 j 1 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 0 i

score 1 1 1 j – – – –

18

Pℓ : i = 5

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 j 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 0 ? i

score 1 1 1 1 j – – –

19

Pℓ : i = 5

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 j 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 0 ? i

score 1 1 1 1 j – – –

19

Pℓ : i = 5

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 j 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 0 1 i

score 1 1 1 1 j – – –

19

Pℓ : i = 6

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 0 j 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 0 1 ? i

score 1 1 1 1 1 j – –

20

Pℓ : i = 6

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 0 j 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 0 1 ? i

score 1 1 1 1 1 j – –

20

Pℓ : i = 6

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 0 j 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 0 1 0 i

score 1 1 1 1 1 j – –

20

Pℓ : i = 7

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 0 0 j 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 0 1 0 ? i

score 1 1 1 1 1 1 j –

21

Pℓ : i = 7

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 0 0 j 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 0 1 0 ? i

score 1 1 1 1 1 1 j –

21

Pℓ : i = 7

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 0 0 j 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 0 1 0 0 i

score 1 1 1 1 1 1 j –

21

Pℓ - B-RASP Example: Dyck-1 of Depth 2

Pℓ indicates whether the symbol
immediately to the left is ℓ.

Pℓ(i) = ▶ [j < i, 1] Qℓ(j).

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 0 1 1 0 0

22

Sr - B-RASP Example: Dyck-1 of Depth 2

Sr indicates whether the symbol
immediately to the right is r.

Sr(i) = ◀ [j > i, 1] Qr(j) .

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 0 1 0 0
Sr 0 1 0 1 1 0 0

23

Sr - B-RASP Example: Dyck-1 of Depth 2

I indicates whether position i is in a
consecutive pair ℓr.

I(i) = (Qℓ(i) ∧ Sr(i)) ∨ (Qr(i) ∧ Pℓ(i)).

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 0 1 0 0
Sr 0 1 0 1 1 0 0
I 0 1 1 1 1 0 0

24

Vℓ - B-RASP Example: Dyck-1 of Depth 2

Vℓ registers a violation for position i if it
has symbol ℓ, is not immediately matched,
and the next not-immediately-matched
symbol is not r:

Vℓ(i) = ◀
[
j > i,¬ I(j)

]
(Qℓ(j) ∧ ¬ I(j) ∧ ¬ Qr(j)).

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 0 1 0 0
Sr 0 1 0 1 1 0 0
I 0 1 1 1 1 0 0
Vℓ 0 0 0 0 0 0 0

25

Vr - B-RASP Example: Dyck-1 of Depth 2

The Boolean vector Vr registers a violation
for position i if it has symbol r, is not
immediately matched, and the previous
not-immediately-matched symbol is not ℓ:

Vr(i) = ▶
[
j < i,¬ I(j)

]
(Qr(i) ∧ ¬ I(i) ∧ ¬ Qℓ(j))

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 0 1 0 0
Sr 0 1 0 1 1 0 0
I 0 1 1 1 1 0 0
Vℓ 0 0 0 0 0 0 0
Vr 0 0 0 0 0 0 0

26

Y - B-RASP Example: Dyck-1 of Depth 2

The output vector Y checks if there is a
violation anywhere.

Y(i) = ◀
[
1, Vℓ(j) ∨ Vr(j)

]
¬(Vℓ(j) ∨ Vr(j))

ℓ ℓ

rr

Program Trace
input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 0 1 0 0
Sr 0 1 0 1 1 0 0
I 0 1 1 1 1 0 0
Vℓ 0 0 0 0 0 0 0
Vr 0 0 0 0 0 0 0
Y 1 1 1 1 1 1 1

ℓℓrℓrr: Accepted

27

Our Results

masked
hard-attention
transformers

masked
Boolean

transformers

B-RASP

linear temporal logic

counter-free

FO[<]

star-free

Th
eo
rem

7.1
Th
eo
rem

7.3

Theorem
6.1

Theorem
6.2

Theorem
4.3

Th
eo
rem

9.5

Thm. 4.1

Kamp [3]

McNaughton and

Papert [4]

Schützenberger [6]

28

Results: B-RASP to Transformers

masked
hard-attention
transformers

masked
Boolean

transformers

B-RASP

linear temporal logic

counter-free

FO[<]

star-free

Th
eo
rem

7.1

Th
eo
rem

7.3

Theorem
6.1

Theorem
6.2

Theorem
4.3

Th
eo
rem

9.5

Thm. 4.1

Kamp [3]

McNaughton and

Papert [4]

Schützenberger [6]

Theorem 7.1
Any B-RASP program can be
converted to a masked
hard-attention transformer.

Score predicates S(i, j) can be
written in canonical DNF:

S(i, j) = (α1(i) ∧ β1(j))
∨ (α2(i) ∧ β2(j))
...
∨ (αk(i) ∧ βk(j))

which is essentially a dot-product

29

Results: Transformers to B-RASP

masked
hard-attention
transformers

masked
Boolean

transformers

B-RASP

linear temporal logic

counter-free

FO[<]

star-free

Th
eo
rem

7.1

Th
eo
rem

7.3

Theorem
6.1

Theorem
6.2

Theorem
4.3

Th
eo
rem

9.5

Thm. 4.1

Kamp [3]

McNaughton and

Papert [4]

Schützenberger [6]

Theorem 7.3
Any masked hard-attention
transformer can be converted to a
B-RASP program.

Show that the transformer uses
only m different activation values.
Then represent an activation with
⌈log2m⌉ bits.

30

Transformer Equivalence

masked hard-attention Transformer

Σ∗

Rd×n B-RASP

input ℓ ℓ r ℓ r r EOS

QEOS 0 0 0 0 0 0 1
Qℓ 1 1 0 1 0 0 0
Qr 0 0 1 0 1 1 0
Pℓ 0 1 1 0 1 0 0
Sr 0 1 0 1 1 0 0
I 0 1 0 1 0 0 0
Vℓ 0 0 0 0 0 0 0
Vr 0 0 0 0 0 0 0
Y 1 1 1 1 1 1 1

31

Our Results

masked
hard-attention
transformers

masked
Boolean

transformers

B-RASP

linear temporal logic

counter-free

FO[<]

star-free

Th
eo
rem

7.1
Th
eo
rem

7.3

Theorem
6.1

Theorem
6.2

Theorem
4.3

Th
eo
rem

9.5

Thm. 4.1

Kamp [3]

McNaughton and

Papert [4]

Schützenberger [6]

32

Equivalent Formalisms

Counter-free automata
ℓ ℓ

rr

Star-free regular expressions: union, concatenation,
complementation

∅aa∅

FO[<]: first order logic of strings with order

Succ(i, j) ≡ j > i ∧ ¬(∃k)(i < k ∧ k < j)

LTL: linear temporal logic

ϕ1 ∧ ϕ2 until ¬ϕ3

33

Results: B-RASP to FO[<]

masked
hard-attention
transformers

masked
Boolean

transformers

B-RASP

linear temporal logic

counter-free

FO[<]

star-free

Th
eo
rem

7.1

Th
eo
rem

7.3

Theorem
6.1

Theorem
6.2

Theorem
4.3

Th
eo
rem

9.5

Thm. 4.1

Kamp [3]

McNaughton and

Papert [4]

Schützenberger [6]

Theorem 4.1
Any B-RASP program can be
converted to a FO[<] formula.

This is fairly straightforward!

34

Prior Work: FO[<] to LTL

masked
hard-attention
transformers

masked
Boolean

transformers

B-RASP

linear temporal logic

counter-free

FO[<]

star-free

Th
eo
rem

7.1

Th
eo
rem

7.3

Theorem
6.1

Theorem
6.2

Theorem
4.3

Th
eo
rem

9.5

Thm. 4.1

Kamp [3]

McNaughton and

Papert [4]

Schützenberger [6]

Theorem
Any FO[<] formula can be
converted to an LTL formula.

Originally proved in Kamp’s PhD
thesis (> 100 pages). Challenge:
an FO[<] formula has any number
of free variables, but an LTL
formula has just one

35

Results: LTL to B-RASP

masked
hard-attention
transformers

masked
Boolean

transformers

B-RASP

linear temporal logic

counter-free

FO[<]

star-free

Th
eo
rem

7.1

Th
eo
rem

7.3

Theorem
6.1

Theorem
6.2

Theorem
4.3

Th
eo
rem

9.5

Thm. 4.1

Kamp [3]

McNaughton and

Papert [4]

Schützenberger [6] Theorem 4.3
Any LTL formula can be converted
to a B-RASP program.

This is fairly straightforward too:
the time variable becomes a
position variable.

36

Prior Work: Counter-Free Automata to Star-Free to FO[<]

masked
hard-attention
transformers

masked
Boolean

transformers

B-RASP

linear temporal logic

counter-free

FO[<]

star-free

Th
eo
rem

7.1

Th
eo
rem

7.3

Theorem
6.1

Theorem
6.2

Theorem
4.3

Th
eo
rem

9.5

Thm. 4.1

Kamp [3]

McNaughton and

Papert [4]

Schützenberger [6]

Theorem Any formula of FO[<]

can be converted to a star-free
regular expression.

Theorem Any star-free regular
expression can be converted to a
counter-free finite automaton.

37

Results: Counter-Free Automata to B-RASP

masked
hard-attention
transformers

masked
Boolean

transformers

B-RASP

linear temporal logic

counter-free

FO[<]

star-free

Th
eo
rem

7.1

Th
eo
rem

7.3

Theorem
6.1

Theorem
6.2

Theorem
4.3

Th
eo
rem

9.5

Thm. 4.1

Kamp [3]

McNaughton and

Papert [4]

Schützenberger [6]

Theorem 9.5 Any counter-free
automaton can be converted to a
B-RASP program.

The Krohn-Rhodes decomposition
(one PhD thesis for two people!) is
a cascade of identity–reset
automata, which can be simulated
in B-RASP.

38

B-RASP - Variants - Strict vs. Non-Strict Masking

Theorem
B-RASP with strict masking is strictly more expressive than with
non-strict masking.

Proof.
No B-RASP program with non-strict masking can recognize the
language {a} with Σ = {a}.

39

Results: Sinusoidal Positional Embeddings

B-RASP masked hard-attention transformers FO[<]

FO[<, MOD]
masked hard-attention transformers
+ sinusoidal position embedding

FO[<, Mon]
masked hard-attention transformers
+ finite-image position embedding

UHAT

AHAT AC0

TC0

RASP

Corollary Masked hard-attention
transformers with sinusoidal
position embeddings recognize
exactly the regular languages in
AC0

By Mix Barrington et al. [5],
FO[<, MOD] recognizes exactly the
regular languages in AC0

40

Results: Positional Embeddings With Finite Image

B-RASP masked hard-attention transformers FO[<]

FO[<, MOD]
masked hard-attention transformers
+ sinusoidal position embedding

FO[<, Mon]
masked hard-attention transformers
+ finite-image position embedding

UHAT

AHAT AC0

TC0

RASP Corollary Masked hard-attention
transformers that have position
embeddings with finite image
recognize exactly the languages
definable in FO[<,Mon].

41

What Next?

• Average-hard attention?
• Learnability?
• Softmax attention?

42

Thank You

Stephen Bothwell, Darcey Riley, Ken Sible,

Aarohi Srivastava, Lena Strobl, and Chihiro Taguchi!

43

Questions?

Σ∗

Rd×n

• Masked hard-attention
transformer as a “base case”

• B-RASP and its equivalences
• Strict masking is more
powerful than non-strict
masking

• Augmenting with position
embeddings

44

References i

References

[1] Pablo Barceló, Alexander Kozachinskiy, Anthony Widjaja Lin, and
Vladimir Podolskii. Logical languages accepted by transformer
encoders with hard attention, 2023. URL
https://arxiv.org/abs/2310.03817. arXiv:2310.03817.

[2] Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability
and limitations of Transformers to recognize formal languages. In
Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 7096–7116, 2020.
DOI 10.18653/v1/2020.emnlp-main.576. URL
https://aclanthology.org/2020.emnlp-main.576.

45

https://arxiv.org/abs/2310.03817
https://doi.org/10.18653/v1/2020.emnlp-main.576
https://aclanthology.org/2020.emnlp-main.576

References ii

[3] Johan Anthony Willem Kamp. Tense Logic and the Theory of
Linear Order. PhD thesis, University of California, Los Angeles,
1968. URL https://www.proquest.com/docview/302320357.

[4] Robert McNaughton and Seymour Papert. Counter-Free
Automata. Number 65 in M.I.T. Press Research Monographs. The
M.I.T. Press, 1971. ISBN 9780262130769. URL
https://archive.org/embed/CounterFre_00_McNa.

[5] David A. Mix Barrington, Neil Immerman, Clemens Lautemann,
Nicole Schweikardt, and Denis Thérien. First-order expressibility
of languages with neutral letters or: The Crane Beach conjecture.
Journal of Computer and System Sciences, 70(2):101–127, 2005.
ISSN 0022-0000. DOI https://doi.org/10.1016/j.jcss.2004.07.004.
URL https://www.sciencedirect.com/science/article/pii/
S0022000004000807.

46

https://www.proquest.com/docview/302320357
https://archive.org/embed/CounterFre_00_McNa
https://doi.org/https://doi.org/10.1016/j.jcss.2004.07.004
https://www.sciencedirect.com/science/article/pii/S0022000004000807
https://www.sciencedirect.com/science/article/pii/S0022000004000807

References iii

[6] M.P. Schützenberger. On finite monoids having only trivial
subgroups. Information and Control, 8(2):190–194, 1965. DOI
10.1016/S0019-9958(65)90108-7.

[7] Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana
Angluin. Transformers as recognizers of formal languages: A
survey on expressivity. arXiv preprint arXiv:2311.00208, 2023.

[8] Shunyu Yao, Binghui Peng, Christos Papadimitriou, and Karthik
Narasimhan. Self-attention networks can process bounded
hierarchical languages. arXiv preprint arXiv:2105.11115, 2021.

47

https://doi.org/10.1016/S0019-9958(65)90108-7
https://doi.org/10.1016/S0019-9958(65)90108-7

Notes on Learnability

Bhattamishra et al. [2] argues that Dyck-1 of depth more than 1 is not
learned by transformers

Yao et al. [8] argues that Dyck-k of depth d is learned by transformers
for various k and d.

	References
	Appendix

